Срочные новости раздела
Физики достоверно увидели тетранейтрон

Физики достоверно увидели тетранейтрон

Коллаборация SAMURAI, в которую вошли физики из 23 стран, сообщила о достоверном обнаружении и измерении свойств тетранейтрона — связанной системы четырех нейтронов. Для этого они обстреливали жидкий водород ядрами гелия-8 и следили за свойствами продуктов реакции. Тетранейтрон оказался резонансом со временем жизни около 4 × 10−22 секунд.

© M. Duer et al. / Nature, 2022

Законы квантовой механики заставляют электроны, притягиваемые атомным ядром, занимать дискретный набор уровней. То же самое происходит и с протонами и нейтронами внутри самих ядер с той лишь разницей, что притяжение возникает уже между самими нуклонами. Но в отличие от атомной физики, где предсказания электронной структуры обладают колоссальной точностью, ядерная физика не может точно предсказывать структуру ядра из-за того, что его свойствами управляет сильное взаимодействие, еще не до конца понимаемое учеными.

Подобно атомам нуклоны могут формировать замкнутые оболочки, формируя стабильные магические ядра. Поскольку протоны и нейтроны — это разные частицы, они формируют свои оболочки по отдельности. В обоих случаях самая первая оболочка состоит всего из двух нуклонов с противоположно направленными спинами (подобно электронам в атоме гелия), однако энергетически наиболее предпочтительными оказываются дважды магические ядра, в которых заполнены и нейтронная, и протонная оболочки. Самое легкое и распространенное дважды магическое ядро — это ядро гелия-4 или альфа-частица, несущая в себе два протона и два нейтрона.

И все же физики активно пытаются найти частицы, состоящие только из нейтронов. Сегодня мы знаем только о существовании динейтрона (системы из двух нейтронов), а также нейтронных звезд, где нейтральные нуклоны удерживает вместе гравитация. Существование мультинейтронных объектов с нечетным числом частиц маловероятно, поэтому усилия экспериментаторов сконцентрированы по большей части вокруг поиска тетранейтрона — системы из четырех нейтронов, хотя его существование допускают только серьезные модификации существующих моделей ядерного взаимодействия.

Важным сигналом о том, что физики движутся в верном направлении, стали результаты работы японских ученых, которые зафиксировали сравнительно долгоживущий (порядка 10-21 секунды) четырехнейтронный резонанс, обстреливая мишень из жидкого гелия-4 пучком изотопов гелий-8. И хотя экспериментальный пик, соответствующий тетранейтрону, был довольно выраженным, его большая ширина и погрешность аппаратуры оставили вопрос о существовании этой частицы открытым. Спустя пять лет другая группа физиков сообщила о тетранейтронном сигнале при столкновении ядер лития-7 с достоверностью три стандартных отклонения.

Теперь же японские физики в рамках новой коллаборации SAMURAI, включающей ученых из 23 стран, сообщили о высокодостоверном обнаружении резонансоподобной структуры в четырехнейтронной системе, которая хорошо вписывается в представление о короткоживущем тетранейтронном состоянии. В отличие от предыдущей работы, они использовали водородную мишень и сконцентрировались на практически лобовых (более 160 градусов разлета в системе центра масс) столкновениях протонов с ядрами лития-8. Последние представляют собой замкнутую оболочку в виде альфа-частицы, окруженную четырьмя нейтронами.

При лобовом столкновении протон выбивает альфа-частицу из ядра, оставляя импульсы и энергию оставшихся четырех нейтронов практически неизменными. Эти параметры можно восстановить по закону сохранения энергии и импульса, точно измеряя свойства протона и альфа-частицы. Для этой цели в институте RIKEN был построен детектор SAMURAI (Superconducting Analyzer for Multi-particles from Radio Isotope Beams), который умел одновременно детектировать множество продуктов реакции. Физики располагали детектор позади жидководородной мишени толщиной пять сантиметров, на которую падал пучок изотопов 8He с энергией 156 мегаэлектронвольт на нуклон.

Увиденный коллаборацией SAMURAI тетранейтрон — это резонансное состояние четырех адронов. Вместе с тем сами адроны могут представлять собой хрупкие кварковые резонансы, самые экзотические из которых — тетракварки и пентакварки.

Статья опубликована в Nature Источник: Марат Хамадеев nplus1.ru

Источник: sci-dig.ru

Последние записи - Наука

самые читаемые новости

#Наука

При иммунном ответе на раковые клетки Т-киллеры активируются по принципиально иному механизму, чем при ответе на инфекционные агенты. К такому выводу пришли американские биологи, проанализировав
подробнее...

Американские исследователи обнаружили, что уровень натрия в крови у верхней границы нормы — показатель недостаточного потребления жидкости — связан с ранним физическим старением, развитием хронических
подробнее...

Первая в мире вакцина для медоносных пчел была одобрена для использования Министерством сельского хозяйства США. Препарат будут получать с кормом пчелиные матки и передавать устойчивость к болезни
подробнее...

Американские ученые научили Lactobacillus reuteri синтезировать блокатор калиевых каналов лимфоцитов, который способен снижать пролиферацию эффекторных T-клеток памяти и, как следствие, воспаление.
подробнее...

Сотрудники биологического факультета и НИИ физико-химической биологии имени А.Н. Белозерского МГУ с коллегами детально изучили факторы, приводящие к хромосомным транслокациям – переносам участков
подробнее...

Российские химики создали молекулярные конструкции на основе органического вещества глутаримида, которые позволяют отправить на разрушение белки, необходимые для деления и роста опухолевых клеток.
подробнее...

Физики из Национальной лаборатории в Брукхейвене (Brookhaven National Laboratory, BNL) открыли совершенно новый тип квантовой запутанности, достаточно известного явления, связывающего квантовые
подробнее...

Физики из коллаборации MicroBooNE сообщили о результатах повторного анализа своих измерений в рамках полной модели нейтринных осцилляций, включающей превращения в стерильные нейтрино. Итог их работы
подробнее...

Ученые Санкт-Петербургского государственного университета и Института радиотехники и электроники имени В. А. Котельникова совместно с профессором Калифорнийского университета в Беркли Леоном Чуа
подробнее...

Американские физики изготовили классический аналог кубита с нелинейностью. Он представляет собой две стальные сферы, в которых возбуждаются волны упругости. Оказалось, что механические колебания в
подробнее...

Палеонтологи описали новый род и вид длиннохвостого пахиплеврозавра по полному скелету, найденному в Китае. Хвост этого животного превышал длину его тела. Окаменелый скелет был обнаружен в 2021 году в
подробнее...

Коллектив ученых Санкт-Петербургского государственного университета и Омского научного центра Сибирского отделения РАН создал композитный материал из многослойных углеродных нанотрубок, оксида
подробнее...

Американские нейробиологи обнаружили четвертую оболочку головного мозга. Тонкая мембрана находится между средней и внутренней менингеальными оболочками, непроницаема для крупных молекул и активно
подробнее...

В 2020 году ученые из ВНИИ животноводства им. Л. К. Эрнста, Сколтеха, МГУ и их коллеги получили первого в России жизнеспособного клонированного теленка, самку назвали Цветочек (по названию клеточной
подробнее...

Российские ученые провели межвидовой анализ экспрессии генов головного мозга у рыбок данио, крыс и людей, чтобы идентифицировать новые общие молекулярные мишени для терапии аффективных расстройств
подробнее...

Бразильские генетики изучили эволюцию генов, которая сделала китообразных гигантами. Они обнаружили гены, которые отбирались из поколения в поколение, и помогли не только достичь огромных размеров, но
подробнее...

Учёные из Сколковского института науки и технологий, Института астрофизики им. Лейбница (Германия), Грацского университета Карла и Франца и Обсерватории Канцельхоэ (Австрия), Загребского университета
подробнее...

Ученые Санкт-Петербургского университета нашли в кусочке янтаря в Калининграде муравья рода Manica, ранее встречавшегося только в горах Европы, Кавказа, Северной Америки и Японии. Возраст находки, как
подробнее...